Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
EX1
a) exprimer vec(CP) en fonction de vec(AB) et vec(AC)
selon la relation de Chasles , vec(CP) = vec(CB) + vec(BP)
vec(CB) = vec(CA) + vec(AB)
vec(BP) = vec(CA) car ACBP est un parallélogramme
donc vec(CP) = vec(CA) + vec(AB) + vec(CA) or vec(CA) = - vec(AC)
d'où vec(CP) = vec(AB) - 2vec(AC)
b) exprimer vec(MN) en fonction de vec(AB) et vec(AC)
d'après la relation de Chasles on a; vec(MN) = vec(MA) + vec(AN)
or vec(MA) = - vec(AM)
d'où vec(MN) = - vec(AM) + vec(AN)
= - 1/3vec(AB) + 2/3vec(AC)
vec(MN) = - 1/3vec(AB) + 2/3vec(AC)
c) en déduire que les droites (MN) et (CP) sont parallèles
vec(MN) = - 1/3vec(AB) + 2/3vec(AC) = - 1/3(vec(AB) - 2vec(AC))
donc vec(MN) = - 1/3vec(CP) , alors les vecteurs MN et CP sont colinéaires
donc les droites (MN) et (CP) sont //
Explications étape par étape
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.