Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour!
J'ai un exercice à réaliser pour la rentrée et je suis dessus depuis le début des vacances...
Si vous pourriez m'aider ce serai vraiment sympa!
Voici la consigne:

On a f(x)= x(1-x)
-Démontrer que pour tout x appartenant à [0;1], 1/4-f(x)>=0.
-Conclure.

Puis la seconde partie de l'exo:

On considère l'expression algébrique:
E(x)=1/4-w(1-x), pour tout x appartenant à [0;1].
a. Justifier que pour tout x appartenant à [0;1]:
x(1-x)=<1/4 équivaut à E(x)
b. Développer E(x)
c. Factoriser E(x)
d. Conclure
e. Construire une carte mentale ou un diagramme traduisant une ou des méthodes permettant d'établir une inégalité.

Pour la e. je suis parti sur une carte mentale mais ça n'a rien donné...
Merci d'avance!!


Sagot :

Réponse :

Explications étape par étape

View image olivierronat