Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
(2) = carré
Ex 25 :
Le triangle HAC est rectangle en H. D’après le théorème de Pythagore, on a :
AC(2) = AH(2) + HC(2)
13(2) = 12(2) + HC(2)
169 = 144 + HC(2)
HC(2) = 169 - 144
HC(2) = 25
Donc HC = V25
HC = 5 cm
Le triangle ABH est rectangle en H. D’après le théorème de Pythagore, on a :
AB(2) = AH(2) + BH(2)
AB(2) = 12(2) + 9(2)
AB(2) = 144 + 81
AB(2) = 225
Donc AB = V225
AB = 15 cm
Ensuite : BC = BH + HC
BC = 9 cm + 5 cm
BC = 14 cm
[AB] est le plus grand côté du triangle ABC donc le triangle ne peut être rectangle qu’en C.
D’une part : AB(2) = 15(2) = 225
D’autre part : BC(2) + AC(2) = 14(2) + 13(2) = 196 + 169 = 365
Donc : AB(2) =/ (est différent de, c’est le égal barré) BC(2) + AC(2)
D’après la réciproque du théorème de Pythagore, le triangle ABC n’est pas rectangle en C.
Ex 34 :
[BE] est le plus grand côté du triangle ABE donc le triangle ne peut être rectangle qu’en A.
D’une part : BE(2) = 26(2) = 676
D’autre part : AB(2) + AE(2) = 24(2) + 10(2) = 576 + 100 = 676
Donc BE(2) = AB(2) + AE(2)
D’après la réciproque du théorème de Pythagore, le triangle ABE est rectangle en A.
On en déduit que l’étagère est bien perpendiculaire au mur donc horizontale.
Ex 25 :
Le triangle HAC est rectangle en H. D’après le théorème de Pythagore, on a :
AC(2) = AH(2) + HC(2)
13(2) = 12(2) + HC(2)
169 = 144 + HC(2)
HC(2) = 169 - 144
HC(2) = 25
Donc HC = V25
HC = 5 cm
Le triangle ABH est rectangle en H. D’après le théorème de Pythagore, on a :
AB(2) = AH(2) + BH(2)
AB(2) = 12(2) + 9(2)
AB(2) = 144 + 81
AB(2) = 225
Donc AB = V225
AB = 15 cm
Ensuite : BC = BH + HC
BC = 9 cm + 5 cm
BC = 14 cm
[AB] est le plus grand côté du triangle ABC donc le triangle ne peut être rectangle qu’en C.
D’une part : AB(2) = 15(2) = 225
D’autre part : BC(2) + AC(2) = 14(2) + 13(2) = 196 + 169 = 365
Donc : AB(2) =/ (est différent de, c’est le égal barré) BC(2) + AC(2)
D’après la réciproque du théorème de Pythagore, le triangle ABC n’est pas rectangle en C.
Ex 34 :
[BE] est le plus grand côté du triangle ABE donc le triangle ne peut être rectangle qu’en A.
D’une part : BE(2) = 26(2) = 676
D’autre part : AB(2) + AE(2) = 24(2) + 10(2) = 576 + 100 = 676
Donc BE(2) = AB(2) + AE(2)
D’après la réciproque du théorème de Pythagore, le triangle ABE est rectangle en A.
On en déduit que l’étagère est bien perpendiculaire au mur donc horizontale.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.