Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour je suis en seconde, vous pouvez m'aider à résoudre cette question.
Existe-t-il deux nombres consécutifs de N dont la différence des inverses est 1/72 ?

Sagot :

Réponse :

Soit deux nombre consécutifs k et k+1 tel que: 

1/k-1/(k+1)=1/72avec k∈N

((k+1)-k)/[k(k+1)]=1/72k

(k+1)/((k+1)-k)=72

k(k+1)=72

k²+k-72=0

Δ=b²-4ac=(1)²-4(1)(-72)=289

k(1)=(-b-√Δ)/2a=(-1-√289)/2=-9,5

k(2)=(-b+√Δ)/2a=(-1+√289)/2=7,5

Il existe 2 entiers consécutifs donc la différence des inverses est 1/72. Ces entiers naturels sont 7,5 et 9,5.

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.