Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour ou bonsoir je bloque sur mon problème de maths. Sur cette Question suivante :Déterminer pour chaque entier n compris entre 2 et 12 (inclus) si n est abondant déficient ou parfait. Merci d’avance

Sagot :

Tenurf

Réponse :

Bonjour,

soit n un entier on note S la somme de ses diviseurs propres

si S = 1 c'est un nombre premier

si S < n c'est un nombre déficient

si S = n c'est un nombre parfait

si S > n c'est un nombre abondant

Explications étape par étape

Tout d'abord il y les cas des nombres déficients qui sont des nombres premiers

la somme de leurs diviseurs propres est 1

Il y a 2, 3, 5, 7, 11

Ensuite il y a les nombres déficients (et non premiers)

4 , la somme de ses diviseurs propres est 2+1 = 3

8 , la somme de ses diviseurs propres est 4+2+1 = 7

9 , la somme de ses diviseurs propres est 3+1 = 4

10 , la somme de ses diviseurs propres est 5+2+1 = 8

Il y a un nombre parfait

6 , la somme de ses diviseurs propres est 3+2+1 = 6

et un nombre abondant

12 , la somme de ses diviseurs propres est 6+4+3+2+1 = 16

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.