Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Explications étape par étape:
1- Ici, il suffit d'étudier le signe de f(x). Il s'agit d'un trinôme du 2nd degré, car c'est le produit de 2 polynômes de degré 1, donc sa forme sera celle d'une parabole, orientée vers le haut, ou vers le bas. Ensuite, tu peux faire un tableau de signes, qu'on peut résumer de cette façon :
f(x) s'annule lorsque x = - 4 ou x = 3. Sur ]-infini ; - 4[ on a x+4 < 0, et x-3 < 0. Donc (x-3)(x+4) > 0 par produit sur cet intervalle. Puis, sur ]-4;3[, on a x+4 > 0 et x-3 < 0 donc (x-3)(x+4) < 0.
Et dernièrement : Sur ]3;+infini[, on a x+4 > 0 et x-3 > 0 donc (x-3)(x+4) > 0.
Comme il y a un facteur -2 devant l'expression, il suffit de tout inverser, on conclut alors que :
f(x) <0 sur I = ]-infini ; -4[ union]3 ; +infini[ et > 0 sur ]-4 ; 3[. On conclut donc, que f est une parabole orientée vers le bas, et elle admet un maximum, qui se situe au milieu de l'intervalle ]-4 ; 3[, il vaut donc -1/2. f est donc strictement croissante sur ]-infini ; - 1/2] et décroissante sur [-1/2 ; +infini[
2- a. f(x) = - 2*(x^2 + x - 12) = - 2x^2 - 2x + 24.
b. Pour tout réel x, on a f'(x) = -4x - 2.
C. f'(x) étant une fonction affine, on determine facilement son signe : f'(x) = 0 si x = -1/2, f'(x) > 0 si x < - 1/2 et < 0 si x > - 1/2. Avec un tableau de variations, on retrouve ce qu'on a vu auparavant
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.