Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Résoudre les inéquations suivantes dans R à l’aide d’un tableau de signes. Il est parfois
nécessaire de factoriser l’expression.

Bonjour j'ai un devoir sur ca pour demain.
Je ny comprends rien qui peux m'aider ?
Merci


Résoudre Les Inéquations Suivantes Dans R À Laide Dun Tableau De Signes Il Est Parfois Nécessaire De Factoriser Lexpression Bonjour Jai Un Devoir Sur Ca Pour De class=

Sagot :

Vins

bonjour,

( 2 x - 3 ) ( 1 - 7 x )  <  0

2 x - 3  s'annule en  3/2

1 - 7 x  s'annule en   1/7

x             -  ∞          1/7          3/2           + ∞

2 x - 3              -              -      0       +

1 - 7 x               +      0      -               -

produit            -        0     +     0        -

S  ] - ∞ ; 1/7 [  ∪ ] 3/2 ; + ∞ [

tu fais pareil pour le second , tu regardes en quelles valeurs de  x l'expression s'annule

( 7 - 2  x)  / ( 2 - x ) < 0

7 - 2 x  s'annule en   7/2

2 - x s'annule en   2  = valeur interdite

x                - ∞              2             7/2               + ∞

7 - 2 x                  +             +         0          -

2 - x                     +     ║0    -                      -

quotient               +        0   -          0          +

S  ] 2 ;  7/2 [

ayuda

bjr

le premier est déjà factorisé...

(2x-3) (1 - 7x) < 0

toujours le même raisonnement

étude du signe de chaque facteur

2x - 3 > 0 q x > 3/2

et 1 - 7x > 0 qd x < 1/7

recap dans un tableau

x              -∞               1/7               3/2                ∞

2x-3                  -                 -                     +

1-7x                   +                -                      -

(  ) (  )                 -                +                      -

lecture du résultat en dernière ligne :

(2x-3) (1 - 7x) < 0 qd x € ]-∞ ; 1/7{ U ]3/2 ; +∞[

même raisonnement pour le dernier..

le 2

x(5x-1) - 3x(x-4) ≤ 0

je factorise :

x (5x-1 - 3(x-4)) ≤ 0

x (2x + 3) ≤ 0

et tu continues

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.