Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Bonjour
Explications étape par étape
je vais répondre a l'exercice 2
poste une autre question pour l'exercice 1 stp
(E) 2y'' + y' - y = -t + 2
1)
Commençons par l'équation homogène
2y'' + y' - y = 0
son équation caractéristique est
[tex]2t^2 + t - 1 = 0[/tex]
discriminant = 1 - 4 * (-1*2) = 9
les solutions sont donc
t0 = (-1-3)/4 = -1
t1 = (-1+3)/4 = 1/2
les solutions y de l'équation homogène sont
pour a et b réels
y(t) = a exp(-t) + b exp(t/2)
2)
trouvons maintenant une solution particulière
prenons en une de la forme f(t)=at+b
f'(t) = a
f'' (t) = 0
2f''(t) + f'(t) - f(t) = a - at - b
et cela doit être égale à -t+2
du coup, nous avons les contraintes suivantes
-a = -1
a-b = 2
d'où a = 1 et b = 1-2 = -1
f est donc de la forme f(t) = t-1
3)
Maintenant nous pouvons conclure
les solutions de l'équation (E) sont les fonctions de la forme
y(t) = t - 1 + a exp(-t) + b exp(t/2)
avec a et b réels
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.