Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, j'ai un DM de maths à faire mais je bloque à la question 2b) quelqu'un pourrait-il m'aider s'il vous plait ? voici l'exercice : " Dans un repère (O,I,J), on souhaite automatiser les calculs permettant d'obtenir les coordonnées du point d'intersection (s'il existe) de deux droites D et Δ d'équations : D : ax + by + c = 0 Δ : dx + ey + f = 0 où (a;b) ≠ (0;0) et (d;e) ≠ (0;0)

1- Justifier que les droites D et Δ sont sécantes si et seulement si, a*e - b*d ≠ 0

2- On suppose que ae - bd ≠ 0. On note (x;y) les coordonnées du point d'intersection des droites D et Δ.

 

a) Justifier que : (a*e - b*d )x = -c*e + b*f = 0

 

b) Obtenir les expressions de x et y en fonction des réels a,b,c,d,e et f. (c'est celle-ci où je bloque j'ai trouvé x :   mais je ne trouve pas y ? )

 

3- En déduire un algorythme - En entrée les réels a,b,c,d,e,f - En Sortie : un texte affichant si les deux droites son sécantes, et si oui, les coordonnées du point d'intersection."

   

Sagot :

 D et Δ sont sécantes si et seulement si, leurs coefficients directeurs -a/b et -d/e ne sont pas égaux, donc ssi le produit en croix a*e - b*d n'est pas nul


x=(ce-bf)/(ae-bd) et y=(af-cd)/(ae-bd)



Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.