Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Réponse : Bonjour,
Partie A
1) On a:
[tex]G'(t)=-1e^{-0,2t}-0,2e^{-0,2t}(-t-5)=-e^{-0,2t}+0,2te^{-0,2t}+e^{-0,2t}=0,2te^{-0,2t}=g(t)[/tex]
Comme [tex]G'(t)=g(t)[/tex], pour tout [tex]t \in [0;+\infty][/tex], alors G est une primitive de g sur [0;+∞[.
2) On a:
[tex]\displaystyle E(X)=\lim_{x \mapsto +\infty} \int_{0}^{x} 0,2te^{-0,2t} \; dt=\lim_{x \mapsto +\infty} [G(t)]_{0}^{x}=\lim_{t \mapsto +\infty} (-t-5)e^{-0,2t}-(0-5)e^{0}\\=0+5=5[/tex]
Donc E(X)=5
Partie B
1)a) Ici la variable aléatoire modélisant la durée d'attente à la borne automatique suit une loi exponentielle de paramètre 0,2.
A la partie A, on a vu que la durée moyenne d'attente est égale à:
[tex]\displaystyle \frac{1}{0,2}=5 \; min[/tex]
Donc la durée moyenne d'attente à la borne automatique est de 5 minutes.
b) La probabilité que la durée d'attente à la borne automatique soit comprise entre 2 et 5 minutes est:
[tex]\displaystyle \int_{2}^{5}0,2e^{-0,2t} \; dt=0,2\int_{2}^{5} e^{-0,2t} \; dt=0,2\left[\frac{e^{-0,2t}}{-0,2}\right]_{2}^{5}=0,2\left(\frac{e-e^{0,4}}{-0,2}\right)\\=-(e^{-1}-e^{-0,4})=e^{-0,4}-e^{-1} \approx 0,302[/tex]
c) La probabilité que la durée d'attente d'un client à la borne automatique soit supérieure à 10 minutes est:
[tex]\displaystyle 1-\int_{0}^{10} 0,2e^{-0,2t} \; dt[/tex]
On calcule donc l'intégrale:
[tex]\displaystyle \int_{0}^{10} 0,2e^{-0,2t} \; dt=0,2\int_{0}^{10} e^{-0,2t} \; dt=0,2\left[\frac{e^{-0,2t}}{-0,2}\right]_{0}^{10}=0,2\left(\frac{e^{-2}-e^{0}}{-0,2}\right)\\=-(e^{-2}-1)=1-e^{-2}[/tex]
Donc la probabilité recherchée est égale à:
[tex]\displaystyle 1-\int_{0}^{10} 0,2e^{-0,2t} \; dt=1-(1-e^{-2})=1-1+e^{-2}=e^{-2} \approx 0,135[/tex]
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.