Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

bonjour, je dois faire cet exo mais je n'ai pas bien compris pouvez vous m'aider, je dois le rendre pour demain!!!​

Bonjour Je Dois Faire Cet Exo Mais Je Nai Pas Bien Compris Pouvez Vous Maider Je Dois Le Rendre Pour Demain class=

Sagot :

Réponse : Bonjour,

1)

[tex]u_{1}=(u_{0})^{2}+u_{0}+1=(-1)^{2}-1+1=1\\u_{2}=(u_{1})^{2}+u_{1}+1=1^{2}+1+1=3\\u_{3}=(u_{2})^{2}+u_{2}+1=3^{2}+3+1=9+3+1=13\\u_{4}=(u_{3})^{2}+u_{3}+1=13^{2}+13+1=169+13+1=183\\u_{5}=(u_{4})^{2}+u_{4}+1=183^{2}+183+1=33489+183+1=33673[/tex]

2) On a:

[tex]u_{n+1}=(u_{n})^{2}+u_{n}+1\\u_{n+1}-u_{n}=(u_{n})^{2}+1[/tex]

Pour tout entier naturel n, [tex](u_{n})^{2} \geq 0[/tex], car un carré est toujours positif, donc [tex](u_{n})^{2}+1 > 0[/tex], on en déduit que pour tout entier naturel n, [tex]u_{n+1}-u_{n} > 0[/tex], donc que [tex]u_{n} < u_{n+1}[/tex].

La suite [tex](u_{n})[/tex] est donc croissante.

3) Les cinq premiers termes de la suite sont:

[tex]v_{0}=0^{2}+0+1=1\\v_{1}=1^{2}+1+1=3\\v_{2}=2^{2}+2+1=4+2+1=7\\v_{3}=3^{2}+3+1=9+3+1=13\\v_{4}=4^{2}+4+1=16+4+1=21[/tex]

On a que [tex]v_{n}=f(n)[/tex], pour tout entier naturel n.

On doit donc étudier les variations de f sur [0;+∞[.

Pour cela, on calcule la dérivée f':

[tex]f'(x)=2x+1[/tex]

On étudie le signe de f', en résolvant l'inéquation:

[tex]2x+1 \geq 0\\2x \geq -1\\x \geq -\frac{1}{2}[/tex]

On a donc le tableau suivant:

x            0                                              +∞

f'(x)                                 +

f(x)                          (croissante)

La fonction f est donc croissante sur [0;+∞[.

Donc pour tout entier naturel n:

[tex]f(n) < f(n+1)\\v_{n} < v_{n+1}[/tex]

La suite [tex](v_{n})[/tex] est donc croissante.

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.