Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Réponse :
Bonjour/ bonsoir, deux vecteurs sont égaux lorsqu'ils ont:
- de même sens
- de même direction
- et de même longueur
Pour montrer que deux vecteurs ont la même direction, il suffit de montrer que leurs droites de support sont parallèles.
Explications étape par étape
1) Pour l'exercice qui nous est soumis, nous procèderons comme suit:
[tex]Si\ \overrightarrow{AN} - \overrightarrow{NM} = \overrightarrow{0}\\et\ \overrightarrow{AN} - \overrightarrow{MC}=\overrightarrow{0}[/tex] Alors AN=NM=MC
- [tex]\overrightarrow{AN}-\overrightarrow{MC}=\overrightarrow{0}[/tex]
Ici nous allons utiliser la règle de Chasles, laquelle on obtient:
[tex]\overrightarrow{AN}-\overrightarrow{MC}=(\overrightarrow{AI}+\overrightarrow{IN})-(\overrightarrow{MK}+\overrightarrow{KC})\\=\overrightarrow{AI}-\overrightarrow{KC}+\overrightarrow{IN}-\overrightarrow{MK}\\=\overrightarrow{0}\ car\ \overrightarrow{AI}=\overrightarrow{KC}\ et\ \overrightarrow{IN}=\overrightarrow{MK}[/tex]
Donc par conséquent, [tex]\overrightarrow{AN}=\overrightarrow{MC}[/tex]
- [tex]\overrightarrow{AN}-\overrightarrow{NM}=\overrightarrow{0}[/tex]
[tex]\overrightarrow{AN}-\overrightarrow{NM}=(\overrightarrow{AI}+\overrightarrow{IN})-(\overrightarrow{ND}+\overrightarrow{DK}+\overrightarrow{KM})\\=\overrightarrow{AI}-\overrightarrow{DK}+\overrightarrow{IN}-\overrightarrow{ND}-\overrightarrow{KM}\\=\overrightarrow{IN}+\overrightarrow{MK}-\overrightarrow{ND}[/tex]
Or, si nous considérons les droites (OK) et (BC) (Cf figure jointe), nous pouvons appliquer le théorème de Thalès tel que:
[tex]\frac{OK}{BC}=\frac{KM}{MB}\\ \\\frac{1/2BC}{BC}= \frac{KM}{MB}\\ \\ \frac{1}{2}=\frac{KM}{MB}\\ \\ KM = \frac{1}{2}MB=\frac{1}{2}ND[/tex]
Ainsi, comme IN=KM, on obtient:
[tex]\overrightarrow{IN}+\overrightarrow{KM}+\overrightarrow{ND}=\frac{1}{2}\overrightarrow{ND}+\frac{1}{2} \overrightarrow{ND}-\overrightarrow{ND}=\overrightarrow{0}[/tex]
Conclusion: AN=NM=MC
2) Rôle de N pour le triangle ABD
N constituele centre de gravité du triangle ABD car nous avons
[tex]\frac{AN}{AO}= \frac{AN}{2/3AN}=\frac{2}{3}\\\\Et \frac{DN}{DI}=\frac{2}{3}[/tex]
Pour aller plus loin sur des questions géométriques..https://nosdevoirs.fr/devoir/239280
#Nosdevoirs
#learnwithBrainly
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.