Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Réponse :
Bonjour/ bonsoir, deux vecteurs sont égaux lorsqu'ils ont:
- de même sens
- de même direction
- et de même longueur
Pour montrer que deux vecteurs ont la même direction, il suffit de montrer que leurs droites de support sont parallèles.
Explications étape par étape
1) Pour l'exercice qui nous est soumis, nous procèderons comme suit:
[tex]Si\ \overrightarrow{AN} - \overrightarrow{NM} = \overrightarrow{0}\\et\ \overrightarrow{AN} - \overrightarrow{MC}=\overrightarrow{0}[/tex] Alors AN=NM=MC
- [tex]\overrightarrow{AN}-\overrightarrow{MC}=\overrightarrow{0}[/tex]
Ici nous allons utiliser la règle de Chasles, laquelle on obtient:
[tex]\overrightarrow{AN}-\overrightarrow{MC}=(\overrightarrow{AI}+\overrightarrow{IN})-(\overrightarrow{MK}+\overrightarrow{KC})\\=\overrightarrow{AI}-\overrightarrow{KC}+\overrightarrow{IN}-\overrightarrow{MK}\\=\overrightarrow{0}\ car\ \overrightarrow{AI}=\overrightarrow{KC}\ et\ \overrightarrow{IN}=\overrightarrow{MK}[/tex]
Donc par conséquent, [tex]\overrightarrow{AN}=\overrightarrow{MC}[/tex]
- [tex]\overrightarrow{AN}-\overrightarrow{NM}=\overrightarrow{0}[/tex]
[tex]\overrightarrow{AN}-\overrightarrow{NM}=(\overrightarrow{AI}+\overrightarrow{IN})-(\overrightarrow{ND}+\overrightarrow{DK}+\overrightarrow{KM})\\=\overrightarrow{AI}-\overrightarrow{DK}+\overrightarrow{IN}-\overrightarrow{ND}-\overrightarrow{KM}\\=\overrightarrow{IN}+\overrightarrow{MK}-\overrightarrow{ND}[/tex]
Or, si nous considérons les droites (OK) et (BC) (Cf figure jointe), nous pouvons appliquer le théorème de Thalès tel que:
[tex]\frac{OK}{BC}=\frac{KM}{MB}\\ \\\frac{1/2BC}{BC}= \frac{KM}{MB}\\ \\ \frac{1}{2}=\frac{KM}{MB}\\ \\ KM = \frac{1}{2}MB=\frac{1}{2}ND[/tex]
Ainsi, comme IN=KM, on obtient:
[tex]\overrightarrow{IN}+\overrightarrow{KM}+\overrightarrow{ND}=\frac{1}{2}\overrightarrow{ND}+\frac{1}{2} \overrightarrow{ND}-\overrightarrow{ND}=\overrightarrow{0}[/tex]
Conclusion: AN=NM=MC
2) Rôle de N pour le triangle ABD
N constituele centre de gravité du triangle ABD car nous avons
[tex]\frac{AN}{AO}= \frac{AN}{2/3AN}=\frac{2}{3}\\\\Et \frac{DN}{DI}=\frac{2}{3}[/tex]
Pour aller plus loin sur des questions géométriques..https://nosdevoirs.fr/devoir/239280
#Nosdevoirs
#learnwithBrainly
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.