Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

bonjour merci d'avance de votre aide

étudier le sens de variation de Un = (3^n)/n ( pour n ≥ 1 )​


Sagot :

Sdu61

Bonjour !

On calcule uₙ₊₁ - uₙ :

[tex]u_{n+1} - u_{n} = \frac{3^{n+1}}{n+1} - \frac{3^n}{n} = \frac{n3^{n+1}-(n+1)3^n}{n(n+1)}\\\\= \frac{3^n}{n(n+1)} (3n-(n+1)) = \frac{3^n}{n(n+1)} (2n-1)[/tex]

Comme le facteur 3^n / (n(n+1)) est positif, et que 2n-1 >0 pour n≥1, on a pour tout n≥1 : uₙ₊₁ - uₙ > 0.

Donc la suite (uₙ)ₙ est strictement croissante.

N'hésite pas si tu as des questions :)

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.