Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

bonsoir ,

j ai un exo en maths (terminale )à démontrer et je suis bloqué est il possible de m 'aider ?
(n ayant pas fait de cours avec prof c est dur de comprendre le chap seul!)
encore merci à vous
bonne soirée et prenez soin de vous​

Bonsoir J Ai Un Exo En Maths Terminale À Démontrer Et Je Suis Bloqué Est Il Possible De M Aider N Ayant Pas Fait De Cours Avec Prof C Est Dur De Comprendre Le C class=

Sagot :

Réponse : j'ai utilité à la place du symbole 'λ' n car j'ai trouvé une difficulté de l'écrire par clavier.

on a : pour tout x supérieur strictement à 0, on a:

[tex]1) G'(x)=((-x-\frac{1}{n} )e^{-nx} )'= -e^{-nx} +nxe^{-nx} +e^{-nx} =nxe^{-nx} =g(x)\\donc: G(x) est une primitive de g.\\2) \int\limits^x_0 {g(x)} \, dx =[(-x-\frac{1}{n} )e^{-nx}]=(-x-\frac{1}{n} )e^{-nx}+\frac{1}{n} \\3) \lim_{x \to+ \infty} E(x)= \lim_{x \to +\infty} (-x-\frac{1}{n} )e^{-nx}+\frac{1}{n} = \frac{1}{n} \\car: \lim_{x\to+ \infty} -xe^{-nx} -\frac{1}{n}e^{-nx} =0[/tex]

Explications étape par étape

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.