Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

bonjour c'est pour vous demander si vous pouviez m'aider s'il vous plaît aider moi merci d'avance ​

Bonjour Cest Pour Vous Demander Si Vous Pouviez Maider Sil Vous Plaît Aider Moi Merci Davance class=

Sagot :

1)a) [tex]f(x)=2x^{3} -3x=x(2x^{2}-3)[/tex] pour factoriser [tex]2x^{2} -3[/tex] on va utiliser l'identité remarquable [tex]a^{2} -b^{2} = (a-b)(a+b)[/tex] et donc ici [tex]a=x\sqrt{2}\\ b=\sqrt{3}[/tex]

Au final [tex]f(x)=x(x\sqrt{2} -\sqrt{3})(x\sqrt{2} +\sqrt{3} )[/tex]

b) x est négatif entre -∞ et 0 et positif entre O et +∞

(x√2 - √3) est négatif entre -∞ et √3/√2 et positif entre √3/√2 et +∞ (simple étude d'une fonction affine)

De même (x√2 + √3) est négatif entre -∞ et -√3/√2 et positif entre -√3/√2 et +∞

On a donc le tableau de signe suivant : entre -∞ et -√3/√2 f est négative, entre -√3/√2 et 0 f est positive entre 0 et √3/√2 f est négative et f est de nouveau positive après √3/√2

2) f(x)≥0 pour x ∈ [-√3/√2;0]∪[√3/√2;+∞[ il suffit de regarder où la courbe est au dessus de l'axe des abscisses.

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.