Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
bonjour
la somme des angles d'un triangle = 180°
AEU = 180 - ( 90 +37) = 53 °
90 + 54 + 32 = 176 °
176 < 180 donc le triangle n'existe pas
180 - ( 58 + 32)= 90
PRU = 90 ° donc le triangle est rectangle
il te faut démontrer qu'il est rectangle et pas te fier simplement à la figure
Réponse :
La somme des angles d'un triangles est égale à 180°.
Explications étape par étape
Premier triangle : L'angle E = 180-(90+37)=180-127=53°
Deuxième triangle : Ce triangle n'existe car la somme des angles d'un triangle est toujours égale à 180° or 90°+54°+32°= 176)° ≠180°
Troisième triangle: ( tu ne peux pas dire que ce triangle est rectangle car ce n'est pas préciser sur le codage de la figure).
On sait que un triangle rectangle est un triangle qui possède un angle droit (90°). La somme des angles d'un triangle est toujours égale à 180°. Donc on cherche à prouver que l'angle U mesure 90°
180-(32+58)=90
Donc le triangle UPR est rectangle
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.