Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour,
Je suis en TS et j'aimerai que quelqu'un m'aide et m'apporte des explications sur ces questions. Merci d'avance!!


Bonjour Je Suis En TS Et Jaimerai Que Quelquun Maide Et Mapporte Des Explications Sur Ces Questions Merci Davance class=

Sagot :

Réponse : Bonjour,

1)

[tex]\displaystyle \int_{-1}^{1} |x| \; dx=\int_{-1}^{0} -x \; dx+\int_{0}^{1} x \; dx=\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{(-1)^{2}}{2}+\frac{1^{2}}{2}\\=\frac{1}{2}+\frac{1}{2}=1[/tex]

2)

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x\cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx[/tex]

On a aussi:

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx=\left[-\frac{1}{x} \times x\right]_{\frac{\pi}{2}}^{\pi}-\int_{\frac{\pi}{2}}^{\pi} -\frac{1}{x} \times \cos x \; dx=-1+\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx\\[/tex]

Donc:

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x \cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx\\=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx+1-\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx=1[/tex]

3) On a:

[tex]\displaystyle \int_{0}^{1} \frac{x}{x+2} \; dx=\int_{0}^{1} \frac{x+2-2}{x+2} \; dx=\int_{0}^{1} 1-\frac{2}{x+2} \; dx=\int_{0}^{1} 1 \; dx-\int_{0}^{1} \frac{2}{x+2} \; dx=[x]_{0}^{1}-2 \int_{0}^{1} \frac{1}{x+2} \; dx=1-2[\ln(x+2)]_{0}^{1}=1-2(\ln(1+2)-\ln(0+2))\\=1-2(\ln(3)-\ln(2))=1-2\ln(3)+2\ln(2)[/tex]

Exercice 2

1) On a:

[tex]\displaystyle \frac{a}{x-1}+\frac{b}{2-3x}=\frac{a(2-3x)+b(x-1)}{(x-1)(2-3x)}=\frac{2a-3ax+bx-b}{(x-1)(2-3x)}=\frac{(b-3a)x+2a-b}{(x-1)(2-3x)}[/tex]

Par identification, on a:

[tex]\displaystyle \left \{ {{b-3a=-10} \atop {2a-b=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {2a+10-3a=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {-a+10=8}} \right. \Leftrightarrow \left \{ {{b=-10+3 \times 2} \atop {a=2}} \right.\\ \\ \Leftrightarrow \left \{ {{b=-4} \atop {a=2}} \right.[/tex]

On a donc que:

[tex]\displaystyle \frac{8-10x}{(x-1)(2-3x)}=\frac{2}{x-1}-\frac{4}{2-3x}\\[/tex]

2) Une primitive de la fonction f est:

[tex]\displaystyle F(x)=2\ln(x-1)-4 \times -\frac{1}{3} \ln(2-3x)=2\ln(x-1)+\frac{4}{3}\ln(2-3x)[/tex]

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.