Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour j'aurais besoin d'aide pour cet exercice en maths s'il vous plaît. Merci
Calculer la dérivée de f_1 (x)=(3x^2+2)×√x (f_1 (x) est définie sur [0;+∞[
Calculer la dérivée de f_2 (x)=(2x+3)^4 (f_2 (x) est définie sur ℝ)
Calculer la dérivée de f_3 (x)=√(4x-2 )(f_3 (x) est définie sur [1/2 ;+∞[

Sagot :

Réponse : Bonsoir,

i)

[tex]\displaystyle f'_{1}(x)=6x\sqrt{x}+\frac{1}{2\sqrt{x}}(3x^{2}+2)=\frac{6x \times 2\sqrt{x}\sqrt{x}+3x^{2}+2}{2\sqrt{x}}=\frac{6x \times 2x+3x^{2}+2}{2\sqrt{x}}\\=\frac{12x^{2}+3x^{2}+2}{2\sqrt{x}}=\frac{15x^{2}+2}{2\sqrt{x}}[/tex]

ii)

[tex]f'_{2}(x)=(2x+3)'4(2x+3)^{3}=2 \times 4(2x+3)^{3}=8(2x+3)^{3}[/tex]

iii)

[tex]\displaystyle f'_{3}(x)=(4x-2)'\frac{1}{2\sqrt{4x-2}}=\frac{4}{2\sqrt{4x-2}}=\frac{2}{\sqrt{4x-2}}[/tex]

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.