Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour vous allez bien est-ce que quelqu'un peut m'aider s'il vous je dois rendre ce devoir aujourd'hui même et je n'ai pas compris
Merci pour ceux qui m'aideront
bonne journée


Bonjour Vous Allez Bien Estce Que Quelquun Peut Maider Sil Vous Je Dois Rendre Ce Devoir Aujourdhui Même Et Je Nai Pas Compris Merci Pour Ceux Qui Maideront Bon class=

Sagot :

Bonjour ;

1.

On a : f(x) = x³ - 3x² - 24x + 8 ;

donc : f ' (x) = (x³ - 3x² - 24x + 8) '

= (x³) ' - 3(x²) ' - 24(x) ' + (8) '

= 3x² - 3 * 2x - 24 * 1 + 0

= 3x² - 6x - 24

= 3(x² - 2x - 8)

= 3(x² + 2x - 4x - 8)

= 3(x(x + 2) - 4(x + 2))

= 3(x + 2)(x - 4) .

Conclusion : votre réponse est vraie .

2.

On a : x + 2 = 0 si x = - 2 et x - 4 = 0 si x = 4 .

Pour le tableau de signe de f ' veuillez-voir le fichier ci joint .

On a : pour x ∈ [ - 5 ; - 2[ ∪ ]4 ; 5] , f ' est strictement positive ;

donc f est strictement croissante ; et pour x ∈ ]- 2 ; 4[ f ' strictement négative ; donc  f est strictement décroissante .

3.

L'abscisse s du maximum de f sur [- 5 ; 5] annule f ' sur [- 5 ; 5] .

On a donc u = - 2 ou u = 4 , mais on a  : f(- 2) = 36 et f(4) = - 72 ;

donc le maximum de f sur [- 5 ; 5] est : S(- 2 ; 36) .

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.