Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Réponse :
Cet exo se porte sur les suites récurrentes. Il s'agit de déterminer une formule générale permettant de trouver tous les termes de la suite. Déterminer la nature de la suite revient à dire si c'est une suite de progression arithmétique ou géométrique
Explications étape par étape
Infos: La valeur de l'appareil diminue 20% chaque année
La valeur de l'appareil est donc : U = 15 000
Etablissons la formule de récurrence qui permet de calculer un terme de la suite à partir du terme précédent:
Soit U₁ le premier terme
U₁ = 15 000
U₂ = U₁ - 0.2U₁
U₂ - U₁ = [15 000 - 0.2(15 000) ] - 15 000
U₂ - U₁ = 15 000 - 15 000 - 3 000
U₂ - U₁ = -3000
Donc on peut en déduire que Uₙ suivrait la logique d'une suite arithmétique car Uₙ₊₁ -Uₙ = r
Donc Uₙ = U₁ + nr
Uₙ = 15 000 - 3000n
Uₙ = 15 000 - 3 000n
Uₙ = 15 000 - 3 000n
Cette suite est une suite de progression arithmétique.
2) Le chef d'entreprise veut revendre cet appareil après 4 ans.
Prouvons que cet appareil a encore de la valeur.
De la formule précédente, on peut dire que :
U₄ = 15 000 - 3 000(4)
U₄ = 15 000 - 12 000
U₄ = 3 000
Donc, on peut dire qu'après 4 ans cet appareil a encore de la valeur
3) A partir de la 5ème année, la valeur de cet appareil sera moins de 3000euros
Car
U₅ = 15 000 - 5(3000)
U₅ = 15000-15000 = 0
L'alogorithme est pour tout i appartenant à N
Ui = 15 000 - 3000i
Pour plus d'infos, veuillez consulter le lien ci-dessous:
https://nosdevoirs.fr/devoir/1881275
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.