Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
Explications étape par étape
Bonjour,
1.
A toi de faire..:-)
2.
L’énonce dit qu'il faut démontrer que K est le centre d'un cercle.
Un cercle est dit circonscrit s'il passe par les 3 sommets d'un triangle (ici ABC).
Si tel est le cas, alors la distance entre ce point K et chaque sommet correspond au rayon du cercle. Pour le démontrer, il faut donc calculer les distances entre les sommets et le centre du cercle et prouver que ces distances (ces longueurs) sont toutes égales.
Je dois donc calculer KA, KB, KC.
J'effectue ces calculs de la même façon en utilisant la formule de Pythagore.
KA = √((xk-xa)²+(yk-ya)²) = √((2-(-1))²+(1-3))²) = √(9+4) = √(13)
KB = √((xk-xb)²+(yk-yb)²) = √((2-4)²+(1-4))²) = √(4+9) = √(13)
KC = √((xk-xc)²+(yk-yc)²) = √((2-5))²+(1-(-1))²) = √(9+4) = √(13)
Comme les distances sont toutes identiques, on peut dire que K est le centre d'un cercle inscrit passant par les 3 sommets du triangle ABC de rayon R = √(13)
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.