Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
Bonjour/ bonsoir, une variable aléatoire à densité est une variable aléatoire continue dont la probabilité qu'elle appartienne à un certain intervalle (parce qu'elle est continue) se fait par un calcul intégral sur cet intervalle.
La fonction à intégrer ici sera alors appelée densité de probabilité ou encore fonction de densité. L'intégrale d'une telle fonction sur l'intervalle total des variables devra toujours donner 1.
Dans notre exercice, la variable aléatoire est la durée de vie X en années d'un composant électronique et sa fonction de densité est :
[tex]f(x) = \frac{6}{27}(3x-x^{2} )=\frac{2}{9}(3x-x^{2})\ si\ 0\leq x\leq 3[/tex]
Explications étape par étape
1. Probabilté pour être hors d'usage avant 1 an
- Vérifions déjà que f est une densité de probabilté
[tex]\int\limits^3_0 {f(x)} \, dx=\int\limits^3_0 {\frac{2}{9}(3x-x^{2})} \, dx=\frac{2}{9}[\frac{3}{2}x^{2}-\frac{1}{3}x^{3}]^3__0[/tex]
[tex]=\frac{2}{9}[(\frac{3}{2}(3)^{2}-\frac{1}{3}(3)^{3})-(\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3})]\\\\=\frac{2}{9}(\frac{27}{2}-\frac{27}{3}) = \frac{2}{9}(\frac{27}{2}-9) \\\\= \frac{2}{9}(\frac{27-18}{2}})=\frac{2}{9}(\frac{9}{2}) = 1[/tex]
D'où f est bien une densité de probabilté.
- Calculons P(0<X<1)
Car "avant 1 an" revient à dire "X < 1". Ainsi, nous effectuons:
[tex]\int\limits^1_0 {f(x)} \, dx=\int\limits^1_0 {\frac{2}{9}(3x-x^{2})} \, dx=\frac{2}{9}[\frac{3}{2}x^{2}-\frac{1}{3}x^{3}]^1__0[/tex]
[tex]=\frac{2}{9}[(\frac{3}{2}(1)^{2}-\frac{1}{3}(1)^{3})-(\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3})]\\\\=\frac{2}{9}(\frac{3}{2}-\frac{1}{3})\\\\= \frac{2}{9}(\frac{9}{6}-\frac{2}{6})=\frac{2}{9}(\frac{7}{6}) = 7/27[/tex]
Alors la probabilité que le composant soit hors d'usage est de 7/27 = 0.259
2. Probabilité d'être hors d'usage durant la 2eme année
Il s'agit de la probabilité P(1<X<2) car le composant a déjà dépassé par l première année mais n'atteindra pas la troisième. On calcule:
[tex]\int\limits^2_1 {f(x)} \, dx=\int\limits^2_1 {\frac{2}{9}(3x-x^{2})} \, dx=\frac{2}{9}[\frac{3}{2}x^{2}-\frac{1}{3}x^{3}]^2__1[/tex]
[tex]=\frac{2}{9}[(\frac{3}{2}(2)^{2}-\frac{1}{3}(2)^{3})-(\frac{3}{2}(1)^{2}-\frac{1}{3}(1)^{3})]\\\\=\frac{2}{9}((6-\frac{8}{3}) -\frac{7}{6}) = \frac{2}{9}(\frac{10}{3}-\frac{7}{6}) \\\\= \frac{2}{9}(\frac{13}{6}})=\frac{13}{27}= 0.48[/tex]
On trouve alors que la probabilité que le composant casse dans la deuxième année est de 48,1% environ.
3. Espérance mathématique de X
L'espérance mathématique de la variable aléatoire X est donnée par la relation:
[tex]\int\limits^3_0 {xf(x)} \, dx=\int\limits^3_0 {\frac{2}{9}(3x^{2}-x^{3})} \, dx=\frac{2}{9}[x^{3}-\frac{1}{4}x^{4}]^3__0[/tex]
[tex]=\frac{2}{9}[(3)^{3}-\frac{1}{4}(3)^{4})-(\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3})]\\\\=\frac{2}{9}(27-\frac{81}{4}) = \frac{2}{9}(\frac{108-81}{4}) \\\\= \frac{2}{9}(\frac{27}{4}})= 1.5[/tex]
Interprétation: Un composant de cette usine fera en moyenne 1.5 année avant de se casser.
Pour aller plus loin..https://nosdevoirs.fr/devoir/1390160
#Nosdevoirs
#learnwithBrainly
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.