Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Réponse :
Bonjour/ bonsoir, l'intensité sonore est une grandeur qui nous permet d'évaluer en quelque sorte la force d'un son. Plus cette valeur est grande, plus le son perçu par notre oreille sera fort ou puissant.
Elle correspond au rapport de la puissance par unité de surface. Ces surfaces peuvent être sphériques lorsque la source du son émet dans un milieu isotrope (c'est-à-dire un milieu où les propriétés physiques sont invariantes en fonctions de la direction; donc où le son se déplace dans toutes les directions.
L'intensité sonore aura donc pour formule [tex]I = \frac{P}{S}[/tex] avec P en W, S en m² et I en [tex]W.m^{-2}[/tex].
Explications :
1. Déterminons l'intensité sonore avec P=12,5W
- A 10m du haut parleur
[tex]I_1 =\frac{P}{S},\ avec\ S_1=4\pi d_1^{2},\ le\ volume\ d'une\ sphere\\ \\I_1= \frac{12,5}{1256}= 9,952*10^{-3}\ W.m^{-2}[/tex]
- Si le sportif se déplace 10 plus loin
Si le sportif se déplace 10m plus loin, alors on obtient:
[tex]d_2= 2d_1\\=> S_2 = 4\pi d_2^2=4\pi (4d_1^2)= 4(4\pi d_1^2)=4S_1[/tex]
Ainsi, la nouvelle intensité sonore obtenue est :
[tex]I_2 = \frac{P}{4S_1} = \frac{I_1}{4}=\frac{9,952*10^{-3} }{4}=2,49*10^{-3}\ W.m^{-2}[/tex]
2) Niveaux sonores et risques auditifs.
L'intensité sonore minimale que l'oreille humaine peut percevoir est de [tex]10^{-12}\ W.m^{-2}[/tex]. Ce qui correspond à un seuil minimal d'audibilité, et on note cette intesnité minimale Io.
Ainsi, pour calculer le niveau sonore, on utiise la formule suivante:
[tex]N = 10log(\frac{I}{I_0})[/tex] avec N en décibel (dB).
On effectue donc les calculs pour nos deux intensités:
[tex]N_1 = 10log(\frac{9,952*10^{-3} }{10^{-12} }) = 99.9\ dB[/tex] soit environ 100 dB.
[tex]N_1 = 10log(\frac{2,49*10^{-3} }{10^{-12} }) = 93.96\ dB[/tex] soit environ 94 dB.
Le niveau sonore maximal que peut supporter l'oreille humaine correspond à une intensité de 100 W.m-2, ce qui donne en décibel
[tex]N_{max} = 10log(\frac{100}{10^{-12} }) = 150\ dB[/tex]
Nous puvons constater que le sportif n'est pas exposé à un danger direct. Cependant, des expositions prolongées et répétées à un tel niveau sonore peuvent endommager son oreille sur le long terme.
Pour aller loin sur les ondes sonores..https://nosdevoirs.fr/devoir/22770
#Nosdevoirs
#learnwithBrainly
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.