Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjours pouvez vous m'aider sur cet exercice s'il vous plait ?

Bonjours Pouvez Vous Maider Sur Cet Exercice Sil Vous Plait class=

Sagot :

1. Commençons par I : Le point I est milieu de [BC] donc x = 1+6/2 = 7/2 = 3,5 et y = 1-2/2 = -1/2 = -0,5
On a I(3,5; -0,5)

On a vecteurAE= 1/3vecteurAC avec vecteur AE(x-3 ; y-4) et vecteur AC de cordonnés (1/3 x (6-3) = 1 ; 1/3 x (-2-4) =-2
Donc à l’aide d’une résolution de sytème on a x - 3 = 1 donc x = 4 et
y - 4 = -2 donc y = 2
On a donc E(4;2)

Ensuite on nous donne CF=1/3CA avec
CF(x-6 ; y + 2) et CA(1/3 x (3-6) = -1 ;
1/3 x (4+2) = 2
Donc a l’aide d’une résolution de système on a x - 6 = -1 donc x = 5 et
y + 2 = 2 donc y = 0
On a donc F(5:0)

2. Pour savoir si les vecteurs BE et IF sont colinéaires, on calcule leurs coordonnées et ensuite leur déterminant, si celui ci est nul, alors les deux vecteurs sont colinéaires :

On a BE(4-1 = 3 ; 2-1=1) donc BE(3;1)
et IF(5-3,5 = 1,5 ; 0+0,5=0,5) donc IF(1,5;0,5)

det(BE;IF)= 3 x 0,5 - 1,5 x 1 = 1,5-1,5= 0

Donc les vecteurs BE et IF sont colinéaires car det(BE;IF) = 0

3. ABCD est un parallélogramme si est seulement si AB=DC donc on calcule les coordonnées des deux vecteurs :
AB(-2;-3) et DC(6-8 = -2 ; -2-1 = -3)

Donc ABCD est bien un parallélogramme car les vecteurs AB et CD sont égaux.

4a. ||AC|| = ((tout a la Racine carré)) (6-3)au carré + (-2+4)au carré
||AC|| = racine carrée de 9+63
||AC|| = Racine carré de 45

b. ABCD est un rectangles si ses diagonales sont de mêmes longueurs donc on a :
||AC|| = racine carré de 45
et ||BD|| = ((tout à la racine carré))
(8-1)au carré + (1-1)au carré
||BD||= racine de 49

On constate que les diagonales du parallélogramme ne sont pas égales donc ABCD n’est pas un rectangle.

5. Les points I, F et D sont alignés si le vecteur IF est colinéaire au vecteur ID :

IF(1,5;0,5) et ID(8-3,5=4,5 ; 1+0,5 = 1,5)

det(IF;ID) = 1,5 x 1,5 - 4,5 x 0,5
= 2,25 - 2,25
= 0
Donc les points I, F et D sont alignés car les vecteurs IF et ID sont colinéaires étant donné que leur déterminant est nul.

ps : tous les vecteurs sont à marquer avec une flèche au dessus pareil pour les normes « ||AC|| et ||BD|| » il faut mettre une flèche au dessus.
Pour les résolution de système il ne faut pas les marquer comme moi mais avec des accolades (comme appris en cours). Pareil pour les coordonnés de vecteur, à ne pas mettre comme moi mais comme appris en cours (abscisse en haut et ordonné en bas)

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.