Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Salut tout le monde ! Je bloque sur cet exercice de maths sur les vecteurs. Pouvez-vous m’aider seulement pour le 1-M du 145 s’il vous plaît ? (Déterminer les coordonnées du point M)
Merci d’avance


Salut Tout Le Monde Je Bloque Sur Cet Exercice De Maths Sur Les Vecteurs Pouvezvous Maider Seulement Pour Le 1M Du 145 Sil Vous Plaît Déterminer Les Coordonnées class=

Sagot :

Tenurf

Réponse :

bjr

Explications étape par étape

soit le point M de coordonnees (x,y)

comme 3MA + 2 MB = 0 nous pouvons ecrire que

3((-2)-y) + 2 (3-y) = 0

3((-3)-x) + 2 (7-x) = 0

donc

-3 (y+2) + 2(3-y) = 0

-3y - 6 +6 - 2y = 0

y = 0

et

-3(x+3) + 2 (7-x) = 0

-3x - 9 +14 -2x = 0

x = 5/5 = 1

Explications étape par étape:

Bonsoir, soit (xM, yM) coordonnées de M, (xN, yN) celles de N et (xP, yP) celles de P. Coordonnés d'un vecteur : MA = (xA - xM) ; (yA - yM) par définition.

Par la 1re equation, en x, on a :

3(xA - xM) + 2(xB - xM) = 0 d'où 5xM =3xA + 2xB = - 9 + 14 = 5. Finalement, xM = 1.

Pour la 2e equation, en y, on a :

5yM = 3yA + 2yB = - 6 + 6 = 0 d'où yM = 0.

Finalement, M a pour coordonnées (1;0).

En appliquant le même raisonnement pour les 2 autres points, N pour la 2e ligne, et P pour la 3e ligne, on aurait :

xN = 3xA - 2xC = - 9 + 4 = - 5.

yN = 3yA - 2yC = - 8.

2xP = xB + xC = 5 donc xP = 5/2.

2yP =, yB + yC = 4 donc yP = 2.

2) Pour démontrer que M, N et P sont alignés, il suffit de prouver que les vecteurs MP et MN sont colineaires par exemple. Plusieurs méthodes possibles. On a MP (3/2 ; 2) et MN (-6 ; - 8). On constate que MN = (-4)*MP, MN et MP sont donc colineaires, ce qui prouve qu'ils sont alignés

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.