Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
bjr
On considère deux fonctions affines f et g telles que f(x)=-3/4 x + 1 et (AB) est la représentation graphique de g sachant que a(0;-2) et b(3;2)
1) Déterminer l'expression de g en justifiant .
g(x) = ax + b (fonction affine)
la droite représentant g passe par A(0;-2)
donc g(0) = -2 => a*0 + b = -2 => b = -2 (point à l'origine)
et la droite passe par B(3;2)
donc g(3) = 2 => a*3 + (-2) = 2 => 3a = 4 => a = 4/3
=> g(x) = 4/3x - 2
2) a) Donner le sens de variation de la fonction f
f(x) = -3/4x + 1
a = coef directeur = - 3/4 => signe négatif => droite décroissante ( voir ton cours)
b) Dresser le tableau de signes de f
f(x) > 0 qd -3/4x + 1 > 0
donc qd -3/4x > - 1
=> x < 4/3
x -∞ 4/3 +∞
f(x) + -
3) Représenter f et g dans le repère
pour g, c'est facile, tu places A et B et tu traces
pour f, tu dois trouver 2 points.
f(x) = -3/4x + 1 => b = 1 = point à l'origine => premier point (0 ; 1)
second point : si x = 4 (au pif), f(4) = -3/4*4 + 1 = -3+1 = -2
=> (4 ; -2)
4) a) Résoudre l'équation f(x) = g(x) algébriquement
-3/4x + 1 = 4/3x - 2
b) Interpréter graphiquement le résultat obtenue
= point d'intersection des deux droites
5) a) Résoudre l'inéquation f(x) > g(x) algébriquement
soit résoudre -3/4x + 1 > 4/3x - 2
b) Interpréter graphiquement le résultat obtenue
=> f est au-dessus de g
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.