Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

SVP aide moi réponderiez au question que vous voulais plz vraiment j'ai besoin d'aide c important ..

1_montrer que:
[tex]a + b \geqslant 2 \sqrt{ab} [/tex]
2_En déduire que:
[tex] \frac{a + 1}{ \sqrt{b} } + \frac{b + 1}{ \sqrt{a} } \geqslant 4[/tex]
3_Un champ de forme rectangulaire de périmètre P=340m.
Montrer que son aire admet une valeur maximale qu'on déterminera.



Sagot :

Bonjour ;

1.

Soient a et b deux nombres réels positifs .

On a : (√a - √b)² ≥ 0 ;

donc : (√a)² + (√b)² - 2(√a)(√b) ≥ 0 ;

donc : a + b - 2√(ab) ≥ 0 ;

donc : a + b ≥ 2√(ab) .

2.

Si de plus a et b sont strictement positifs ;

on a : a + 1 ≥ 2√a et b + 1 ≥ 2√b ;

donc : (a + 1)/(√b) ≥ 2(√a)/(√b) et (b + 1)/(√a) ≥ 2 (√b)/(√a) ;

donc : (a + 1)/(√b) + (b + 1)/(√a) ≥ 2(√a)/(√b) + 2 (√b)/(√a) ;

donc : (a + 1)/(√b) + (b + 1)/(√a) ≥ 2((√a)/(√b) + (√b)/(√a)) ;

donc : (a + 1)/(√b) + (b + 1)/(√a) ≥ 2((√a)² + (√b)²)/((√a)(√b)) ;

donc : (a + 1)/(√b) + (b + 1)/(√a) ≥ 2(a + b)/√(ab) ≥ 2 (2√(ab))/√(ab) = 4 ;

donc : (a + 1)/(√b) + (b + 1)/(√a) ≥ 4 .

3.

Soient x et y respectivement la longueur et largeur du champ .

On a : p = 2(x + y) = 340 ;

donc : x + y = 340/2 = 170 ;

donc : y = 170 - x ;

donc l'aire du champ est : xy = x(170 - x) = 170x - x² .

On a : - x² + 170x = - x² + 2 * 85 * x = - (x² - 2 * 85 * x)

= - (x² - 2 * 85 * x + 85² - 85²) = - (x² - 2 * 85 * x + 85²) + 85²

= 85² - (x - 85)² = 7225 - (x - 85)² .

Cette expression est maximale si (x - 85)² = 0 ;

donc si : x - 85 = 0 ; donc si : x = 85 .

Cette valeur maximale est 7225 - 0 = 7225 .

L'aire maximale du champ est : 7225 m² .

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.