Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

exercice sur les suites.
bonjours , bonsoirs je bloque sur une questions et j'aimerais savoirs si éventuellement l'un d'entre vous aurait une formule pour me débloquer
Le programme ci-contre calcule et affiche le terme Un d'une suite pour un entier naturel n, n1, saisi en entrée.

Variables :
- n est du type nombre
- u est du type nombre
- k est du type nombre

Début algorithme :
- lire n
- u prend la valeur 0
- pour k allant de 1 à n :
- Début pour
- u prend la valeur u+2^k
- Fin pour
- Afficher u
Fin algorithme
jaimerais savoirs comment , Exprimer le terme générale Un en fonction de n.
merci d'avance pour vos réponse .


Sagot :

Tenurf

Réponse :

bjr

Explications étape par étape

ben allons y etape par etape

u0 =0 puisque le debut de l algorithme est "u prend la valeur 0"

ensuit k varie de 1 a n

donc u1 = u0 + 2^1 = u0 + 2 = 0 + 2 = 2

u2 = u1 + 2^2 = 2 + 4 = 6

u3 = u2 + 2^3 = u1 + 2^2 + 2^3 = 2^1 + 2^2 + 2^3

u4 = 2^1 + 2^2 + 2^3 + 2^4

etc

un = 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^n

c est la somme d une suite geomtrique de raison 2 car 2^(n+1) / 2^n = 2

donc un = (2^(n+1) - 2) / (2 - 1) = (2^(n+1) - 2)

un = 2^(n+1) - 2

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.