Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Mathématiques seconde
a) Vérifier que chacun des nombres premiers autre que 2 peut s’écrire 4n+1 ou 4n-1 (avec n appartenant à Z)
b) Romain affirme: “Pour obtenir un nombre premier il suffit de remplacer n par une valeur dans 4n+1 ou 4n-1”
Expliquer à Romain pourquoi il a tort.

Sagot :

bjr

Un nombre premier est un entier naturel qui admet exactement deux diviseurs (lui-même et 1)

a)

Vérifier que chacun des nombres premiers autre que 2 peut s’écrire 4n+1 ou 4n-1 (avec n appartenant à Z)

 un nombre premier est un naturel c'est donc " n appartenant à N"  

• le reste de la division par 4 peut être : 0 ; 1 ; 2 ou 3

tout naturel est donc de la forme

(1)   4n + 0

(2)  4n + 1

(3)  4n + 2

(4)  4n + 3

un naturel qui s'écrit 4n est multiple de 4 et n'est pas premier

un naturel qui s'écrit 4n + 2 soit 2(2n + 1) est multiple de 2 et n'est pas premier

un nombre premier ne peut pas s'écrire sous les formes (1) ou (3)

Il peut s'écrire les formes (2) ou (4)

forme (2) : 4n + 1

forme (4) : 4n + 3 = 4n + 4 - 1 = (4n + 4) -1

                                               = 4(n + 1) -1

                                               = 4n' -1

Un nombre premier est donc un multiple de 4 plus 1

                                          ou   un multiple de 4 moins 1

b)

la réciproque est fausse

ce n'est pas parce qu'un nombre peut s'écrire sous la forme

4n + 1   ou   4n -1  qu'il est premier

exemple

21 = 20 + 1

   = 4 x 5 + 1

21 est un multiple de 4 plus 1 mais il n'est pas premier (3 x 7)

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.