Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour j’aurais besoin d’aide pour les exercice 45 et 48 je ne les comprends pas merci d’avance

Bonjour Jaurais Besoin Daide Pour Les Exercice 45 Et 48 Je Ne Les Comprends Pas Merci Davance class=

Sagot :

Bonjour ;

Exercice n° 45 .

1.

Le coefficient directeur de la tangente T à C au point A d'abscisse x = 2

est : g ' (2) .

g est la fonction inverse , donc elle est dérivable sur IR* .

On a : g ' (x) = (1/x) ' = - 1/x² .

On a : g ' (2) = - 1/2² = - 1/4 ; donc le coefficient directeur de la tangente T

à C au point A d'abscisse x = 2 est : g ' (2) = - 1/4 .

2.

On a : g ' (- x) = - 1/(- x)² = - 1/x² = g ' (x) ;

donc on a : g ' (- 2) = g ' (2) = - 1/4 ;

donc La tangente T ' à C au point d'abscisse x = - 2 a pour coefficient

directeur - 1/4 qui est égal au coefficient directeur de T ; donc les tangentes

T et T ' à C aux points d'abscisses 2 et - 2 sont parallèles .

3.

g ' est une fonction fonction paire ; donc pour tout nombre réel a > 0 ;

on a : g ' (a) = g ' (- a) ; donc les tangentes à C aux points d'abscisses a et - a

sont parallèles .

Exercice n° 48 .

i est la fonction inverse , donc elle est dérivable sur IR* ;

donc pour tout x appartenant à IR* ; on a : i ' (x) = (1/x) ' = - 1/x² .

On a : i ' (2) = - 1/4 et i(2) = 1/2 .

L'équation "y" de la tangente à C au point d'abscisse x = 2 ;

vérifie l'équation suivante : i ' (2) = (y - i(2))/(x - 2) ;

donc : - 1/4 = (y - 1/2)/(x - 2) ;

donc : - 1/4x + 1/2 = y - 1/2 ;

donc : - 1/4 x + 1 = y ;

donc la tangente à C au point d'abscisse x = 2 a pour

équation : y = - 1/4 x + 1 .

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.