Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonsoir pouvez-vous m’aider pour cet exercice en maths merci d’avance pour votre aide
Soit ABCD un parallélogramme tel que:
AB=4,AC=9 et AD=6
a)Calculer vecteurAB.vecteur AD
b)En déduire une valeur approchée à un degré près de BÂD


Sagot :

Réponse:

jBonsoir vous pouvez m'aider svp et faire les figure sur feuille svp

Exercice 1: tracer un cercle de centre A. (EC) et (BD) sont deux

diamètres de ce cerele.

1) Faire une figure

2) Demontrer que ABC et AED sont deux triangles égaux,

3) Démontrer que BC ED

M

Exercice 2: MTNO est un carré. A est un point de [MT], C un point de

(MO) tels que : AT-MC, (AN) et (BT) se coupent en I.

1) Faire une figure

2) Démontrer que AN-CT puis que TAN=MCT (on utilisera les

triangles MCT et ATN).

3) Démontrer que (AN) et (CT) sont perpendiculaires.

Exercice 3: MRB est un triangle tel que MB-5,5cm, MR-4cm et

RB-3cm. RTB et MRI sont deux triangles équilatéraux situés à l'extérieur

du triangle MRB.

1) Faire une figure.

2) Démontrer que BRI=MRT.

3) En considérant les triangles BIR et MRT, démontrer que

BI=MT

Explications étape par étape:

Bonsoir vous pouvez m'aider svp et faire les figure sur feuille svp

Exercice 1: tracer un cercle de centre A. (EC) et (BD) sont deux

diamètres de ce cerele.

1) Faire une figure

2) Demontrer que ABC et AED sont deux triangles égaux,

3) Démontrer que BC ED

M

Exercice 2: MTNO est un carré. A est un point de [MT], C un point de

(MO) tels que : AT-MC, (AN) et (BT) se coupent en I.

1) Faire une figure

2) Démontrer que AN-CT puis que TAN=MCT (on utilisera les

triangles MCT et ATN).

3) Démontrer que (AN) et (CT) sont perpendiculaires.

Exercice 3: MRB est un triangle tel que MB-5,5cm, MR-4cm et

RB-3cm. RTB et MRI sont deux triangles équilatéraux situés à l'extérieur

du triangle MRB.

1) Faire une figure.

2) Démontrer que BRI=MRT.

3) En considérant les triangles BIR et MRT, démontrer que

BI=MT

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.