Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Réponse :
Explications étape par étape
g est dérivable sur ]0; +infini[ comme quotient de 2 fonctions dérivables dont le dénominateur ne s'annule pas
[tex]g(x)=\frac{u}{v} (x)[/tex]
[tex]u(x) = \sqrt{x} => u'(x)) = \frac{1}{2\sqrt{x} } \\v(x) = x+1 => v'(x)=1\\\\g'(x) =\frac{\frac{1}{2\sqrt{x} }(x+1)-\sqrt{x} }{(x+1)^{2} } \\g'(x)= \frac{\frac{x+1}{2\sqrt{x} }-\frac{2x}{2\sqrt{x} } }{(x+1)^{2} } \\g'(x)=\frac{-x+1}{2\sqrt{x} (x+1)^{2} } = \frac{(1-x)\sqrt{x} }{2\sqrt{x} (x+1)^{2}(\sqrt{x} ) } \\g'(x)= \frac{(1-x)\sqrt{x} }{2x (x+1)^{2} }[/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.