Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonsoir, il est tard très tard je sais. Mais svp est-ce que quelqu'un pourrait m'aider pour mon dm il est à rendre demain et il est vraiment compliqué pour moi. Merci d'avance ​

Bonsoir Il Est Tard Très Tard Je Sais Mais Svp Estce Que Quelquun Pourrait Maider Pour Mon Dm Il Est À Rendre Demain Et Il Est Vraiment Compliqué Pour Moi Merci class=

Sagot :

Réponse :

En espérant que tu aura une bonne note bonne chance

View image Ame13lrx

Réponse :

3) a) expliquer pourquoi le problème revient à résoudre l'inéquation

2 x² - 40 x + 128 ≥ 0

A(x) ≥ 272 ⇔ 2 x² - 40 x + 400 ≥ 272 ⇔ 2 x² - 40 x + 400 - 272 ≥ 0

⇔2 x² - 40 x + 128 ≥ 0

b) démontrer l'égalité; il suffit de développer (8 - 2 x)(16 - x) = 128 - 8 x - 32 x + 2 x² = 128 - 40 x + 2 x²

donc on a bien  128 - 40 x + 2 x² = (8 - 2 x)(16 - x)

c)  x          0                   4                  16               20

  8 - 2 x              +         0        -                   -

 16 - x                 +                    +          0     -  

  P                      +          0        -           0     +

Les valeurs de x pour lesquelles l'aire du carré MNPQ dépasse ou égale à 272 cm² sont : x ≤ 4  ou x ≥ 16  

4) Bonus : déterminer la valeur de x pour laquelle l'aire du carré MNPQ est minimale

A(x) = 2 x² - 40 x + 400 ⇔ A(x) = 2(x² - 20 x + 200)

⇔ A(x) = 2(x² - 20 x + 200 + 100 - 100)

⇔ A(x) = 2((x - 10)² + 100) ⇔ A(x) = 2(x - 10)² + 200

on a mis A(x) sous la forme canonique donc la valeur de x pour laquelle l'aire du carré MNPQ est minimale est x = 10  et Amin = 200 cm²

Explications étape par étape

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.