Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Merci d'avance.
On considère le quart de cercle C de rayon 1 et de centre O ci dessous. ( voir photoOn considère un point M mobile sur le quart de cercle et les points P et Q tels que OPMQ soit un rectangle.

En utilisant des considérations géométriques, déterminer les variations de la fonction A donnant l’aire du rectangle OPMQ en fonction de la valeur x= OP


Merci Davance On Considère Le Quart De Cercle C De Rayon 1 Et De Centre O Ci Dessous Voir PhotoOn Considère Un Point M Mobile Sur Le Quart De Cercle Et Les Poin class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

Dans le triangle OMP rectangle en P , d'après le théorème de Pythagore, on a   OM² = OP² + MP²

donc MP² = OM² - OP² = 1 -x²

MP = √(1-x²)

Donc A(x) = x√(1-x²)

A'(x) = √(1-x²) - x²/√(1-x²) = (1-2x²)/√(1-x²)

Le signe de la dérivée ne dépend que de 1-2x², puisque le dénominateur est positif

1-2x² s'annule pour x = √2/2

donc A'(x) est positive sur [0 ;√2/2] et négative sur [√2/2 ; 1]

Donc A(x) est croissante sur [0 ; √2/2] et décroissante sur [√2/2 ; 1]

L'aire maximum de OPMQ est atteinte pour OP = √2/2

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.