Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

bonjour ,pouvez vous m'aider s'il vous plait a ce exercice 94 .merci beaucoup

Bonjour Pouvez Vous Maider Sil Vous Plait A Ce Exercice 94 Merci Beaucoup class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

1) On peut conjecturer que la distance AM est minimale pour M(1 ; 1)

2) La fonction carré est croissante sur [0 ; +∞[, donc AM est minimale si Am² est minimale

3) a) M a pour coordonnées (x ; f(x)) , c'est à dire M(x ; x²) puisqu'il  est sur la parabole P

d(x) = AM² = (xM - xA)² + (yM - yA)²

⇔ d(x) = (x - 3)² + (x² - 0)² = x² - 6x + 9 + x^4 = x^4 + x²- 6x + 9

b) d'(x) = 4x³ + 2x - 6

(x - 1)(4x² + 4x +6) = 4x³ + 4x² + 6x - 4x² - 4x -6 = 4x³ +2x - 6 = d'(x)

c) voir pièce jointe

d) La longueur minimale de AM est donc bien atteinte pour M d'abscisse 1,et donc de coordonnées M(1 ; 1).On aura alors AM² = 5 , donc AM = √5

View image ecto220
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.