Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour je suis élève en classe de 1er et j'ai un exo de mathématique à faire et je ne comprends, je n'ai jamais vu ca en cours et c'est à rendre pour un dm. Il s' agit d'un exo sur les exponentielles, pourriez vous m'aider? L'exo est en pièce jointe. Merci d'avance

Bonjour Je Suis Élève En Classe De 1er Et Jai Un Exo De Mathématique À Faire Et Je Ne Comprends Je Nai Jamais Vu Ca En Cours Et Cest À Rendre Pour Un Dm Il S Ag class=

Sagot :

Réponse : Bonjour,

On a:

[tex]\displaystyle \left(\frac{ax+b}{e^{x}}\right)'=\frac{ae^{x}+e^{x}(ax+b)}{(e^{x})^{2}}=\frac{e^{x}(a+ax+b)}{e^{2x}}=\frac{a+ax+b}{e^{x}}=\frac{ax+a+b}{e^{x}}\\=\frac{2+x}{e^{x}}[/tex]

Le coefficient devant "x" du numérateur est 1. Et le coefficient "sans x" est 2.

Par identification, on a que:

[tex]\displaystyle \left \{ {{a=1} \atop {a+b=2}} \right.\Leftrightarrow \left \{ {{a=1} \atop {b=2-a}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=2-1}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=1}} \right.[/tex]

La fonction recherchée est donc: [tex]\displaystyle x \mapsto \frac{x+1}{e^{x}}[/tex]

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.