Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour je suis élève en classe de 1er et j'ai un exo de mathématique à faire et je ne comprends, je n'ai jamais vu ca en cours et c'est à rendre pour un dm. Il s' agit d'un exo sur les exponentielles, pourriez vous m'aider? L'exo est en pièce jointe. Merci d'avance

Bonjour Je Suis Élève En Classe De 1er Et Jai Un Exo De Mathématique À Faire Et Je Ne Comprends Je Nai Jamais Vu Ca En Cours Et Cest À Rendre Pour Un Dm Il S Ag class=

Sagot :

Réponse : Bonjour,

On a:

[tex]\displaystyle \left(\frac{ax+b}{e^{x}}\right)'=\frac{ae^{x}+e^{x}(ax+b)}{(e^{x})^{2}}=\frac{e^{x}(a+ax+b)}{e^{2x}}=\frac{a+ax+b}{e^{x}}=\frac{ax+a+b}{e^{x}}\\=\frac{2+x}{e^{x}}[/tex]

Le coefficient devant "x" du numérateur est 1. Et le coefficient "sans x" est 2.

Par identification, on a que:

[tex]\displaystyle \left \{ {{a=1} \atop {a+b=2}} \right.\Leftrightarrow \left \{ {{a=1} \atop {b=2-a}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=2-1}} \right. \Leftrightarrow \left \{ {{a=1} \atop {b=1}} \right.[/tex]

La fonction recherchée est donc: [tex]\displaystyle x \mapsto \frac{x+1}{e^{x}}[/tex]

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.