Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjours, pourriez vous m'aider, je ne comprend pas comment faire ce dm et malheureusement, il me reste peut de temps. S'il vous plaît, aidez moi. Merci beaucoup d'avance. ​

Bonjours Pourriez Vous Maider Je Ne Comprend Pas Comment Faire Ce Dm Et Malheureusement Il Me Reste Peut De Temps Sil Vous Plaît Aidez Moi Merci Beaucoup Davanc class=

Sagot :

Réponse :

1) déterminer les intersections de la parabole P avec les axes du repère

avec l'axe des abscisses : P(x) = 0 ⇔ - 1/2) x² - x + 3/2 = 0

⇔ - 1/2(x² + 2 x - 3) = 0 ⇔ - 1/2(x + 3)(x - 1) = 0 ⇔ (x + 3)(x - 1) = 0

⇔ x +3 = 0 ⇔ x = - 3 ou x - 1 = 0 ⇔ x = 1

les coordonnées des points d'intersection de P avec l'axe des abscisses sont : (- 3 ; 0) et (1 ; 0)

avec l'axe des ordonnées :  f(0) = 3/2   les coordonnées du point d'intersection de P avec l'axe des ordonnées sont  (0 ; 3/2)

2) mettre la fonction P sous forme canonique

    P(x) = - 1/2) x² - x + 3/2

           = - 1/2(x² + 2 x - 3)

           = - 1/2(x² + 2 x - 3 + 1 - 1)

           = - 1/2((x + 1)² - 4)

           = - 1/2(x + 1)² + 2

3) construire le tableau de variation de P

   x     - ∞                             - 1                            + ∞

  P(x)  - ∞ →→→→→→→→→→→→→ 2 →→→→→→→→→→→→ - ∞

                     croissante               décroissante

5) je te laisse tracer toi même la courbe

6) déterminer algébriquement l'intersection de la parabole avec la droite D d'équation y = - 3/2) x - 9/2

      on écrit  P(x) = y  ⇔   - 1/2) x² - x + 3/2 = - 3/2) x - 9/2

⇔ - 1/2) x² - x + (3/2) x + (3/2) + (9/2) = 0

⇔ - 1/2) x² + (1/2) x + 6 = 0 ⇔ - 1/2(x² - x - 12) = 0 ⇔ x² - x - 12 = 0

Δ = 1 + 48 = 49 ⇒ √49 = 7   on a deux racines distinctes

x₁ = 1 + 7)/2 = 4  ⇒ y = - 6 - 9/2  = - 21/2   ⇒ (4 ; - 21/2)

x₂ = 1 - 7)/2 = - 3 ⇒ y = - 9  ⇒ (- 3 ; - 9)

7) résoudre algébriquement  P(x) > - 3/2) x - 9/2 ⇔  - 3 < x < 4

x                - ∞              - 3                  4                 + ∞

P(x) - y                    -       0         +       0         -

l'ensemble des solutions est:  S = ]- 3 ; 4[

en donner une interprétation graphique

la position de la parabole est au-dessus de la droite D

Explications étape par étape

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.