Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse : Bonjour,
Il faut calculer le taux de variation en a=0:
[tex]\displaystyle \lim_{h \mapsto 0} \frac{l(0+h)-l(0)}{h}=\lim_{h \mapsto 0} \frac{\frac{1}{h-1}-1}{h}=\lim_{h \mapsto 0} \frac{\frac{1-(h-1)}{h-1}}{h}=\lim_{h \mapsto 0} \frac{\frac{1-h+1}{h-1}}{h}\\=\lim_{h \mapsto 0} \frac{\frac{2-h}{h-1}}{h}=\lim_{h \mapsto 0} \frac{2-h}{h(h-1)}=\lim_{h \mapsto 0} \frac{h(\frac{2}{h}-1)}{h(h-1)}=\lim_{h \mapsto 0} \frac{\frac{2}{h}-1}{h-1}[/tex]
Or:
[tex]\lim_{h \mapsto 0} \frac{2}{h}-1=+\infty\\\lim_{h \mapsto 0} h-1=-1\\\displaystyle Donc \; \lim_{h \mapsto 0} \frac{\frac{2}{h}-1}{h-1}=-\infty[/tex]
La limite du taux de variation en 0, n'étant pas une limite finie, donc l(x) n'est pas dérivable en 0.
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.