Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour j'ai besoin d'aide en maths,merci
Déterminer si la fonction est dérivable en a et si il existe donner la valeur du nombre derivé de a
l(x)=1/x-1
a=0


Sagot :

Réponse : Bonjour,

Il faut calculer le taux de variation en a=0:

[tex]\displaystyle \lim_{h \mapsto 0} \frac{l(0+h)-l(0)}{h}=\lim_{h \mapsto 0} \frac{\frac{1}{h-1}-1}{h}=\lim_{h \mapsto 0} \frac{\frac{1-(h-1)}{h-1}}{h}=\lim_{h \mapsto 0} \frac{\frac{1-h+1}{h-1}}{h}\\=\lim_{h \mapsto 0} \frac{\frac{2-h}{h-1}}{h}=\lim_{h \mapsto 0} \frac{2-h}{h(h-1)}=\lim_{h \mapsto 0} \frac{h(\frac{2}{h}-1)}{h(h-1)}=\lim_{h \mapsto 0} \frac{\frac{2}{h}-1}{h-1}[/tex]

Or:

[tex]\lim_{h \mapsto 0} \frac{2}{h}-1=+\infty\\\lim_{h \mapsto 0} h-1=-1\\\displaystyle Donc \; \lim_{h \mapsto 0} \frac{\frac{2}{h}-1}{h-1}=-\infty[/tex]

La limite du taux de variation en 0, n'étant pas une limite finie, donc l(x) n'est pas dérivable en 0.

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.