Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse : Bonjour,
1)
[tex]P(X < 1)=\int_{0}^{1} -\frac{2}{9}x^{2}+\frac{2}{3}x \; dx=-\frac{2}{9}[\frac{x^{3}}{3}]_{0}^{1}+\frac{2}{3}[\frac{x^{2}}{2}]_{0}^{1}=-\frac{2}{9} \times \frac{1}{3}+\frac{2}{3} \times \frac{1}{2}=-\frac{2}{27}+\frac{1}{3}\\=\frac{-2+9}{27}=\frac{7}{27} \approx 0,259[/tex]
2)
[tex]P(1 < X < 2)=\int_{1}^{2} -\frac{2}{9}x^{2}+\frac{2}{3}x \; dx=-\frac{2}{9}[\frac{x^{3}}{3}]_{1}^{2}+\frac{2}{3}[\frac{x^{2}}{2}]_{1}^{2}=-\frac{2}{9}(\frac{8}{3}-\frac{1}{3})+\frac{2}{3}(\frac{4}{2}-\frac{1}{2})\\=-\frac{2}{9} \times \frac{7}{3}+\frac{2}{3} \times \frac{3}{2}=-\frac{14}{27}+1=\frac{-14+27}{27}=\frac{13}{27} \approx 0,481[/tex]
3)
[tex]P(X > 2,5)=1-P(X \leq 2,5)\\P(X \leq 2,5)=\int_{0}^{2,5} -\frac{2}{9}x^{2}+\frac{2}{3}x \; dx=-\frac{2}{9}[\frac{x^{3}}{3}]_{0}^{2,5}+\frac{2}{3}[\frac{x^{2}}{2}]_{0}^{2,5}=-\frac{2}{9} \times \frac{2,5^{3}}{3}+\frac{2}{3} \times \frac{2,5^{2}}{2}\\=-\frac{2}{9} \times \frac{15,625}{3}+\frac{2}{3} \times \frac{6,25}{2}=\frac{-2 \times 2 \times 2,5^{3}+2 \times 9 \times 2,5^{2}}{54}=\frac{2,5^{2}(-2 \times 2 \times 2,5+2 \times 9)}{54}=\frac{2,5^{2} \times 8}{54}\\=\frac{50}{54}[/tex]
[tex]P(X \leq 2,5)=\frac{50}{54}=\frac{25}{27}[/tex]
Donc:
[tex]P(X > 2,5)=1-P(X \leq 2,5)=1-\frac{25}{27}=\frac{27-25}{27}=\frac{2}{27} \approx 0,074[/tex]
4)
[tex]m=\int_{0}^{3} x f(x) \: dx=\int_{0}^{3} x(-\frac{2}{9}x^{2}+\frac{2}{3}x) \; dx=\int_{0}^{3} -\frac{2}{9}x^{3}+\frac{2}{3}x^{2} \; dx=-\frac{2}{9}[\frac{x^{4}}{4}]_{0}^{3}+\frac{2}{3}[\frac{x^{3}}{3}]_{0}^{3}\\=-\frac{2}{9} \times \frac{3^{4}}{4}+\frac{2}{3} \times \frac{3^{3}}{3}=-\frac{3^{2}}{2}+\frac{2 \times 3^{2}}{3}=-\frac{9}{2}+2 \times 3=-\frac{9}{2}+6=\frac{-9+12}{2}=\frac{3}{2}=1,5[/tex]
La durée de vie moyenne d'un composant électronique est donc de 1 an et demi.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.