Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

1
Bonjour à tous, j'ai un DM de maths sur lequel je reste complètement bloquée. Quelqu'un pourrait-il m'aider s'il vous plaît ? Je vous remercie par avance

1 Bonjour À Tous Jai Un DM De Maths Sur Lequel Je Reste Complètement Bloquée Quelquun Pourraitil Maider Sil Vous Plaît Je Vous Remercie Par Avance class=

Sagot :

Réponse :

Explications étape par étape

1) résolution de (x+1)/(2x-3)=1 sachant que x>3/2

x+1=2x-3  solution x=4

si x =4, f(x)=ln1=0

La courbe représentative de f(x) coupe l'axe des abscisses au point (4;0)

2) dérivée f(x) est de la forme ln u(x) sa dérivée est u'/u

avec u'= dérivée d'un quotient  ce qui donne [1*(2x-3)-2(x+1)]/(2x-3)²

=-5/(2x-3)²

f'(x)=[-5/(2x-3)²]*(2x-3)/(x+1)= -5/(2x-3)(x+1) réponse donnée dans l'énoncé.

3) x étant >3/2, (2x-3) est>0  (x+1) est>0 donc f'(x) est toujours <0.

4) limite en 1,5+

si x tend vers 1,5+, x+1 tend vers 2,5 et (2x-3) tend vers 0+ donc f(x) tend vers +oo.

la droite d'équation x=1,5 est une asymptote verticale

5) limite en +oo

si x tend vers +oo (x+1)/(2x-3) tend vers 1/2 rapport des coefficients de plus haut degré, donc f(x) tend vers ln(1/2) soit -ln2

la droite d'équation y=-ln2 est une asymptote horizontale.

6) tableau de signes de f'(x) et de variations de f(x)

x     1,5                          4                              +oo

f'(x).................-................................-....................

f(x)  II+oo.....décroi.........0..........décroi............-ln2

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.