Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.
Sagot :
Réponse :
Bonsoir
Explications étape par étape
a) si n est impair,on peut l'écrire sous la forme n = 2k + 1 (avec k entier)
donc n² - 1 = (2k +1)² - 1 = 2k² + 4k + 1 - 1 = 4k² + 4k = 4k(k+1)
k et k+1 sont consécutifs,l'un des deux est donc pair, et leur produit est donc pair. Donc k(k + 1) s'écrit sous la forme 2k'(avec k' = k(k+1) entier)
donc n² - 1 = 4k(k + 1) = 4× 2k' = 8 k'
donc 8 divise n² - 1 lorsque n est impair
b) 3^n sera toujours un nombre impair (son dernier chiffre est toujours 1, 3 , 7 ou 9)
donc 1 + 3^n est toujours pair
c) 2^n + 2^(n+1) = 2^n + 2×2^n = 2^n ×(1 + 2) = 3 × 2^n
donc 2^n + 2^(n+1) est divisible par 3
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.