Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, je suis en seconde général et j’ai vraiment besoin d’aide.

On veut construire une boîte en bois avec couvercle ayant une base carrée de côté x et une hauteur égale à 2. 1. Montrer que la surface extérieure de la boîte est donnée en fonction de x par la formule S(x) = 2(x+2)²-8. 2. Pour quelle(s) valeur(s) de x la boîte a t-elle une surface extérieure égale à 72 ? (Identités remarquables) Merci beaucoup de votre aide !


Sagot :

Réponse :

L'aire de la boite est composée:

*de deux carrés (fond et couvercle) de côté x soit 2x²

*d'un rectangle (aire latérale )  de longueur 4x et de largeur 2 soit 8x.

l'aire totale A(x)=2x²+8x

que l'on peut écrire 2(x²+4x) mais  x²+4x est le début de (x+2)²qui donne x²+4x+4 j'ai 4 en trop je les soustrais

A(x)=2[(x+2)²-4]=2(x+2)²-8

je veux que cette aire soit égale à72 pour cela je résous l'équation 2(x+2)²-8=72  ou 2(x+2)²-80=0 ou 2[(x+2)²-40)=0

cette équation est nulle si (x-2)²-40=0 je reconnais l'identité remarquable a²-b² qui donne (a-b)(a+b)

soit (x+2-2V10)(x+2+2V10)=0

solution x=2V10-2   l'autre solution étant <0 on l'élimine.

vérification A=2*(2V10-2)²+4*(2V10-2)*2=88-16V10+16V10-16=72

Explications étape par étape

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.