Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
Pour l'exercice de probabilité, il est toujours utile de savoir faire un arbre de probabilité. Dans l'urne il y a 3+n boules.
Donc la probabilité de tirer l'une des 3 boules noires est égale à p(Noire)=3/(3+n) et la probabilité d'en tirer une rouge est égale à p(rouge)=n/(3+n)
Vue qu'on remet à chaque fois la boule qu'on vient de tirer au deuxième tirage ces probabilité ne change pas (le contenu de l'urne est le même que pour le premier tirage). la probabilité de tirer une Noire puis une rouge est donc égale à p(Noire)*p(Rouge)
la probabilité de tirer une rouge puis une noire est p(Rouge)*p(Noire)
Au final la probabilité d'en tirer deux de couleurs différentes est égale à
P= p(Noire)*P(Rouge)+p(Rouge)*P(Noire)
si on réécrit tout ça en fonction de n
P=[tex](\frac{3}{3+n}\times \frac{n}{3+n}) +( \frac{n}{3+n} \times \frac{3}{3+n})=2 \times \frac{3n}{(3+n)^{2}}=\frac{6n}{(3+n)^2}\\[/tex]
Si on veut que cette probabilité soit égale à [tex]\frac{4}{9}\\[/tex]
Il faut résoudre P=4/9 et ne retenir que la solution entière (résoudre une équation du second degré ne devrait pas poser problème) (on trouve n=6)
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.