Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Explications étape par étape:
As-tu fait les questions précédentes ? Car elles sont plus difficiles et te fournissent quasiment tout pour répondre.
Par la question 2b, on sait que 1 < un <= (1 + V(5)) /2. Donc le dénominateur de u(n+1)-un est strictement positif. Ensuite, comme p(x) est un trinôme du 2nd degré, dont le coefficient devant x^2 est positif, sa courbe est une parabole tournée vers le haut, admettant un minimum en x = 1/2.
Donc p est strictement croissante sur [1/2 ; + infini[ donc a fortiori sur [1; 1+V(5)/2]. En composant l'inégalité du 2b par p, le sens est donc conservé, ça donne p(1) < p(un) <= p((1+V(5))/2) d'où -1 < p(un) <= 0.
Le numérateur est donc négatif ou nul, donc u(n+1)-un est positif ou nulle, on déduit alors que un est croissante.
3. Croissante et majorée donc théorème de convergence monotone prouve qu'elle converge.
4. Si un converge vers une limite L alors u(n+1) aussi converge vers L, logique. Par définition, u(n+1) = V ( un + 1), donc en passant à la limite ça donne L = V (L+1) ==> L^2 = L + 1. On a déjà les solutions, on garde celle positif 1+V(5)/2.
Jz te laisse finir le reste
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.