Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour je suis vraiment nul en suites surtout géométrique si quelqu'un aurait l'amabilité de m'aider pour cette exercice ça serait cool. Merci d'avance.


Bonjour Je Suis Vraiment Nul En Suites Surtout Géométrique Si Quelquun Aurait Lamabilité De Maider Pour Cette Exercice Ça Serait Cool Merci Davance class=

Sagot :

Réponse : Bonsoir,

1)a) Comme le triangle [tex]OA_{n}A_{n+1}[/tex] rectangle isocèle en [tex]A_{n+1}[/tex], alors les angles [tex]\widehat{A_{n+1}OA_{n}}=\widehat{OA_{n}A_{n+1}}=45 \°[/tex].

On a que:

[tex]\cos(\widehat{A_{n+1}OA_{n}})=\frac{OA_{n+1}}{OA_{n}}\\OA_{n+1}=\cos(\widehat{A_{n+1}OA_{n}}) \times OA_{n}=\cos(45\°) \times OA_{n}=\frac{1}{\sqrt{2}}OA_{n}[/tex]

b) Comme pour tout entier naturel n, [tex]l_{n}[/tex], est la longueur [tex]OA_{n}[/tex], alors on en déduit que:

[tex]l_{n+1}=\frac{1}{\sqrt{2}}l_{n}[/tex]

Donc la suite [tex](l_{n})[/tex] est géométrique de raison [tex]\frac{1}{\sqrt{2}}[/tex].

c) On a donc pour tout entier n: [tex]l_{n}=l_{0} \times (\frac{1}{\sqrt{2}})^{n}=1 \times (\frac{1}{\sqrt{2}})^{n}=(\frac{1}{\sqrt{2}})^{n}[/tex].

2)a) On a:

[tex]\displaystyle p_{n}=l_{1}+l_{2}+...+l_{n}=l_{1} \times \frac{1-(\frac{1}{\sqrt{2}})^{n}}{1-\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}} \times \frac{1-\frac{1}{(\sqrt{2})^{n}}}{\frac{\sqrt{2}-1}{\sqrt{2}}}=\frac{1-\frac{1}{(\sqrt{2})^{n}}}{\sqrt{2}-1}[/tex]

b) On a que:

[tex]p_{8}=\frac{1-\frac{1}{(\sqrt{2})^{8}}}{\sqrt{2}-1}=\frac{1-\frac{1}{2^{4}}}{\sqrt{2}-1}=\frac{1-\frac{1}{16}}{\sqrt{2}-1}=\frac{15}{16} \times \frac{1}{\sqrt{2}-1}=\frac{15}{16} \times \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}\\=\frac{15}{16} \times \frac{\sqrt{2}+1}{2-1}=\frac{15}{16}(\sqrt{2}+1)=\frac{15\sqrt{2}+15}{16}[/tex]

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.