Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour pouvez vous m'aider s'il vous plaît :suppose que la durée de vie d’une voiture suit une loi exponentielle de paramètre 0,1. 1) Calculer la probabilité qu’une voiture dépasse 10 ans de durée de vie.2) On sait qu’une voiture a duré déjà 10 ans. Quelle est la probabilité qu’elle dépasse 12
ans de durée de vie ?


Sagot :

Réponse : Bonsoir,

1)

[tex]P(X > 10)=\int_{10}^{+ \infty} 0,1e^{-0,1x} \; dx=0,1 \int_{10}^{+ \infty}e^{-0,1x}=0,1[\frac{e^{-0,1x}}{-0,1}]_{10}^{+\infty}\\=0,1(0+\frac{e^{-1}}{0,1})=e^{-1} \approx 0,368[/tex]

2)

[tex]P_{X > 10}(X > 12)=P(X > 2)\\P(X > 2)=\int_{2}^{+\infty} 0,1e^{-0,1x} dx=0,1[\frac{e^{-0,1x}}{-0,1}]_{2}^{+\infty}=0,1(0+\frac{e^{-0,2}}{0,1})\\=e^{-0,2} \approx 0,812[/tex]