Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Réponse : Bonsoir,
Hérédité: On suppose la propriété vraie à l'ordre n, c'est à dire que [tex]u_{n}=\frac{2^{n}+2}{2^{n}-2}[/tex], et montrons là à l'ordre n+1.
On a:
[tex]\displaystyle u_{n+1}=\frac{\frac{3(2^{n}+2)}{2^{n}-2}+1}{\frac{2^{n}+2}{2^{n}-2}+3}=\frac{\frac{3(2^{n}+2)+2^{n}-2}{2^{n}-2}}{\frac{2^{n}+2+3(2^{n}-2)}{2^{n}-2}}=\frac{\frac{2^{n}(3+1)+4}{2^{n}-2}}{\frac{2^{n}(1+3)-4}{2^{n}-2}}=\frac{4(2^{n}+1)}{2^{n}-2} \times \frac{2^{n}-2}{4(2^{n}-1)}\\=\frac{2^{n}+1}{2^{n}-1}=\frac{2}{2} \times \frac{2^{n}+1}{2^{n}-1}=\frac{2(2^{n}+1)}{2(2^{n}-1)}=\frac{2^{n+1}+2}{2^{n+1}-2}[/tex]
La propriété est vérifiée à l'ordre n+1, donc pour tout [tex]\displaystyle n \geq 2, \: u_{n}=\frac{2^{n}+2}{2^{n}-2}[/tex].
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.