Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, pourriez-vous m’aider pour la question 2 svp

Bonjour Pourriezvous Maider Pour La Question 2 Svp class=

Sagot :

Réponse :

1) déterminer les coordonnées du point G telles que vec(CG) = (2/3)vec(CO)

soit G(x ; y)  donc  vec(CG) = (x - 4 ; y - 4)  et vec(CO) = (0-4 ; 0-4) = (- 4 ; - 4)

2/3)vec(CO) = (- 8/3 ; - 8/3)

(x - 4 ; y - 4) = (- 8/3 ; - 8/3)  ⇔ x - 4 = - 8/3 ⇔ x = - 8/3 + 4 = 4/3

y - 4 = - 8/3 ⇔ y = - 8/3 + 4 = 4/3

Donc les coordonnées du point G sont:  G(4/3 ; 4/3)

2) montrer que les points A , G et A' sont alignés

A' milieu de (BC)  donc A'((4+2)/2 ; 4/2) = (3 ; 2)

les vecteurs AG et GA' sont colinéaires  ssi  x'y - y'x = 0

vec(AG) = (4/3 + 2 ; 4/3)  = (10/3 ; 4/3)

vec(GA') = (3 - 4/3 ; 2 - 4/3) = (5/3 ; 2/3)

5/3)*(4/3) - 2/3)*10/3 = 20/9 - 20/9 = 0

les vecteurs AG et GA' sont colinéaires donc les points A ; G et A' sont alignés

3) démontrer que vec(GA)+vec(GB)+vec(GC) = vec(0)

vec(GA) = (- 2 - 4/3 ; - 4/3) = (- 10/3 ; - 4/3)

vec(GB) = (2 - 4/3 ; - 4/3) = (2/3 ; - 4/3)

vec(GC) = (4 - 4/3 ; 4 - 4/3) = (8/3 ; 8/3)

vec(GA)+vec(GB)+vec(GC) = vec(0) ⇔  

(- 10/3 ; - 4/3) + (2/3 ; - 4/3) + (8/3 ; 8/3) = (- 10/3 + 2/3 + 8/3 ; - 4/3 - 4/3 + 8/3) = (-10/3 + 10/3 ; - 8/3 + 8/3) = (0 ; 0)

Explications étape par étape

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.