Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour, pourriez-vous m’aider pour la question 2 svp

Bonjour Pourriezvous Maider Pour La Question 2 Svp class=

Sagot :

Réponse :

1) déterminer les coordonnées du point G telles que vec(CG) = (2/3)vec(CO)

soit G(x ; y)  donc  vec(CG) = (x - 4 ; y - 4)  et vec(CO) = (0-4 ; 0-4) = (- 4 ; - 4)

2/3)vec(CO) = (- 8/3 ; - 8/3)

(x - 4 ; y - 4) = (- 8/3 ; - 8/3)  ⇔ x - 4 = - 8/3 ⇔ x = - 8/3 + 4 = 4/3

y - 4 = - 8/3 ⇔ y = - 8/3 + 4 = 4/3

Donc les coordonnées du point G sont:  G(4/3 ; 4/3)

2) montrer que les points A , G et A' sont alignés

A' milieu de (BC)  donc A'((4+2)/2 ; 4/2) = (3 ; 2)

les vecteurs AG et GA' sont colinéaires  ssi  x'y - y'x = 0

vec(AG) = (4/3 + 2 ; 4/3)  = (10/3 ; 4/3)

vec(GA') = (3 - 4/3 ; 2 - 4/3) = (5/3 ; 2/3)

5/3)*(4/3) - 2/3)*10/3 = 20/9 - 20/9 = 0

les vecteurs AG et GA' sont colinéaires donc les points A ; G et A' sont alignés

3) démontrer que vec(GA)+vec(GB)+vec(GC) = vec(0)

vec(GA) = (- 2 - 4/3 ; - 4/3) = (- 10/3 ; - 4/3)

vec(GB) = (2 - 4/3 ; - 4/3) = (2/3 ; - 4/3)

vec(GC) = (4 - 4/3 ; 4 - 4/3) = (8/3 ; 8/3)

vec(GA)+vec(GB)+vec(GC) = vec(0) ⇔  

(- 10/3 ; - 4/3) + (2/3 ; - 4/3) + (8/3 ; 8/3) = (- 10/3 + 2/3 + 8/3 ; - 4/3 - 4/3 + 8/3) = (-10/3 + 10/3 ; - 8/3 + 8/3) = (0 ; 0)

Explications étape par étape

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.