Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Factoriser nes polynômes du second degré suivants, dont on donne une racine :
f(x)=x2+13x+30, de racine -3
g(x)=5x2+9x-2, de racine -2
h(x)=x2+10x-200, de racine 10

x2= x au carré
5x2= 5x au carré
x2= x au carré

Pouvez vous m'aider ?​


Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape

1)

Méthode 1:

-3 est une racine et la somme des racines vaut -13.

L'autre racine vaut donc -10

f(x)=(x+3)(x+10)

Méthode 2:

[tex]\begin{array}{c|c|c|c|}&x^2&x&1\\&1&13&30\\x=-3&&-3&-30\\&1&10&0\\\end{array}\\f(x)=(x+3)(x+10)\\[/tex]

Méthode 3:

f(x)=x²+13x+30=x²+3x+10x+30=x(x+3)+10(x+3)=(x+3)(x+10)

2)

g(x)=5x²+9x-2=5x²+10x-x-2=5x(x+2)-(x+2)=(x+2)(5x-1)

3)

h(x)=x²+10x-200=x²-10x+20x-200=x(x-10)+20(x-10)=(x-10)(x+20)

x²=x ==> x(x-1)=0

5x²=5x  ==> 5x²-5x=0 ==> 5x(x-1)=0

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.