Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Helloo pouvez-vous m’aider pour ces deux questions svp ?

Helloo Pouvezvous Maider Pour Ces Deux Questions Svp class=

Sagot :

Réponse : Bonjour,

1) On a que [tex]u_{n}=f(n)[/tex], avec [tex]f(x)=\frac{2x}{x+1}[/tex].

Pour étudier les variations de f, il faut calculer la dérivée f':

[tex]f'(x)=\frac{2(x+1)-2x}{(x+1)^{2}}=\frac{2x+2-2x}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}[/tex].

Pour x positif, on a que f'(x) > 0, donc f est croissante sur [0;+∞[.

La suite [tex](u_{n})[/tex] est donc croissante.

2) On a que:

[tex]\lim_{n \mapsto +\infty} u_{n}=\lim_{n \mapsto +\infty} f(n)[/tex].

De plus:

[tex]f(n)=\frac{2n}{n+1}=\frac{2n}{n(1+\frac{1}{n})}=\frac{2}{1+\frac{1}{n}}[/tex]

Or [tex]\lim_{n \mapsto +\infty} (1+\frac{1}{n})=1[/tex], donc [tex]\lim_{n \mapsto +\infty} f(n)=2[/tex].

Par suite, [tex]\lim_{n \mapsto +\infty} u_{n}=2[/tex].

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.